FB LinkEdIn Instagram

Relevant Projects

Photo of Guy Gilboa
Associate Professor
Adaptive LiDAR Sampling

As LiDAR sensors for depth acquisition advance to solid-state technologies, new capabilities raise new theoretical and technological challenges. In particular, we investigate benefits afforded by controlling and changing in real time the sampling scheme (adaptive sampling). We use neural-network to predict the optimal sampling scheme per scene, given a fixed sampling budget. We found  that for a given RMSE, the sampling budget can be reduced by a factor of about 4 on average. Various strategies and algorithms are examined.

Gradient flows

We investigate analytic and numerical solutions of nonlinear gradient flows. We examine the flows as nonlinear PDE’s and use tools from nonlinear spectral theory. We have recently revealed relations between Dynamic mode decomposition (DMD), a common tool for fluid dynamics, and nonlinear eigenfunctions related to homogeneous flows. We are investigating through this lens gradient descent algorithms of complex systems.

Nonlinear spectral theory

We examine how to define systems and signals through nonlinear eigenvalue analysis. For example – we developed an image representation based on the total-variation transform. We also examine neural-networks through eigen-analysis and design algorithms to reveal their (nonlinear) eigenfunctions.