FB LinkEdIn Instagram

Relevant Projects

Photo of Jonathan Natanian
Assistant Professor
Energy performance in heterogeneous built environments

This research aims at exploring the impacts of mixed-use and mixed-typology configurations on energy performance (i.e., supply, demand, and the balance between them) in the Israeli context. To do that – we are adopting a cross-use, cross-scale (from a room to a district), and a cross-climatic analytical approach (different climate zones and future climate), which is applied here on several local test cases. The methodology includes an optimization module that offers a set of spatial and usage combinations which supply a favorable energy starting point in the heterogeneous design of buildings and districts.

.

A holistic generative cross-climatic method for solar-driven environmental design

This project aims to advance the existing scientific knowledge on solar design by harnessing novel computational optimization methods. We explore a generative approach in which a combination of solar-driven metrics drives the form-finding process based on a multi-objective optimization process. The workflow is applied to a real district case study in Tel Aviv and yields a large set of spatial solar-driven building masses, rather than one solar envelope volume, which corresponds to the different trade-offs between the environmental performance metrics applied.

.

Environmentally responsive by urban design

This project offers new insights into the nexus between urban form and environmental performance both at the local and global contexts. We develop and explore a new set of harmonized workflows, which by capitalizing on the benefits of advanced computational intelligence, open new possibilities in the pursuit of a sustainable urban form – going beyond energy considerations towards environmental quality and urban livability. As part of the project new simplified evaluation metrics are developed to be employed in multi-objective optimization studies of environmental performance at the urban scale.