Immunotherapy has revolutionized cancer therapy, leading to the 2018 Nobel Prize in Physiology and Medicine. However, despite the dramatic response observed in several cancer types, many patients do not benefit from this treatment or relapse in a relatively short time. To improve our understanding of patient response we utilize single-cell RNA-seq data to characterize the tumor’s microenvironment, identify biomarkers of response and predict novel drug targets.
The use of immunotherapy for solid tumors has expanded dramatically with the development of checkpoint blockade therapy. Despite the unprecedented responses observed in different tumor types, many patients are refractory to therapy or acquire resistance. Growing evidence shows that the metabolic requirements of immune cells in the tumor microenvironment greatly influence the success of therapy. Here we use genomic and metabolic modeling analysis to reveal the metabolic dependencies between tumor and immune cells and identify perturbations that can increase immune activity.
Pancreatic cancer is the most aggressive form of human malignancies, with only 6% 5-year survival rate. Recently, it was found that a subgroup of patients carry mutations in the homologous recombination (HR) genes BRCA1 or BRCA2 and these tumors are sensitive to PARP inhibitor. However, response rates are infrequent and the subset of patients suitable for the treatment is limited. Here we use genomic data to computationally identify molecular signatures of response to be used as biomarkers, and aim to increase the number of patients that can benefit from the treatment.