We are interested in developing intelligent systems that support students’ learning. One project develops “invention activities” for students learning data science, supported by automatic feedback mechanisms. This approach aims to facilitate improved understanding of data science concepts by letting students invent and test quantitative measures. In a second project, we are developing an intelligent system for supporting student collaboration on joint project. We are designing algorithms for analyzing students’ and design interfaces that will provide collaborators with actionable information regarding the group’s progress.
Understanding the capabilities and limitations of agents is important for users, as they need to choose between different agents, adjust the level of autonomy of an agent, or work alongside an agent. While prior work in explainable AI has developed methods for explaining individual decisions of an agent to a person retrospectively, these approaches do not provide users with a global understanding of an agent’s expected behavior in a range of situations. We are developing explanation methods for reinforcement learning agents.